Correlation Engine 2.0
Clear Search sequence regions


The present study was undertaken to investigate whether RP-1 treatment protected mitochondrial system against radiation damage and also to unravel the mechanism associated with this process. Radioprotection of mitochondrial system by Podophyllum hexandrum (RP-1) was investigated to understand its mechanism of action. Levels of superoxide anion (O2-), reduced or oxidized glutathione (GSH or GSSG), thiobarbituric acid reactive substance (TBARS), protein carbonyl (PC), ATP, NADH-ubiquinone oxidoreductase (complex-I), NADH-cytochrome c oxidoreductase (complex I/II), succinate-cytochrome c oxidoreductase (complex II/III) and mitochondrial membrane potential (MMP) were studied in mitochondria isolated from liver of mice belonging to various treatment groups. Whole body y-irradiation (10 Gy) significantly (p < 0.01) increased the formation of O2-, PC, and TBARS, upto 24 h as compared to untreated control. RP-1 treatment (200 mg/kg b.w.) to mice 2 h before irradiation reduced the radiation-induced O2- generation within 4 h and formation of TBARS and PC upto 24 h significantly (p < 0.01). Singularly irradiation or RP-1 treatment significantly (p < 0.01) increased the levels of glutathione within an hour, as compared to untreated control. Pre-irradiation administration of RP-1 enhanced levels of GSH induced increase in complex I (upto 16 h), complex I/III (4 h) complex II/III activity (upto 24 h; p < 0.01) and inhibited the radiation-induced decrease in MMP significantly (24 h; p < 0.01). The present study indicates that RP-1 itself modulates several mitichondrial perameters due to its influence on the biochemical milieu within and outside the cells. However, RP-1 treatment before irradiation modulates radiation induced perturbations such as the increase in electron transport chain enzyme activity, formation of O2-, TBARS and PC to offer radioprotection.

Citation

Damodar Gupta, Rajesh Arora, Amar Prakash Garg, Madhu Bala, Harish Chandra Goel. Modification of radiation damage to mitochondrial system in vivo by Podophyllum hexandrum: mechanistic aspects. Molecular and cellular biochemistry. 2004 Nov;266(1-2):65-77

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 15646028

View Full Text