Correlation Engine 2.0
Clear Search sequence regions


The potential for resistance development in Streptococcus pneumoniae secondary to exposure to gatifloxacin, gemifloxacin, levofloxacin, and moxifloxacin at various levels was examined at high inoculum (10(8.5) to 10(9) log10 CFU/ml) over 96 h in an in vitro pharmacodynamic (PD) model using two fluoroquinolone-susceptible isolates. The pharmacokinetics of each drug was simulated to provide a range of free areas under the concentration-time curves (fAUC) that correlated with various fluoroquinolone doses. Potential first (parC and parE)- and second-step (gyrA and gyrB) mutations in isolates with raised MICs were identified by sequence analysis. PD models simulating fAUC/MICs of 51 andgatifloxacin, gemifloxacin, levofloxacin, and moxifloxacin, respectively, against each isolate were associated with first-step parC (S52G, S79Y, and N91D) and second-step gyrA (S81Y and S114G) mutations. For each fluoroquinolone a delay of first- and second-step mutations was observed with increasingly higher fAUC/MIC ratios and recovery of topoisomerase mutations in S. pneumoniae was related to the fAUC/MIC exposure. Clinical doses of gatifloxacin, gemifloxacin, and moxifloxacin exceeded the fAUC/MIC resistance breakpoint against wild-type S. pneumoniae, whereas those of levofloxacin (500 and 750 mg) were associated with first- and second-step mutations. The exposure breakpoints for levofloxacin were significantly different (P<0.001) from those of the newer fluoroquinolones gatifloxacin, gemifloxacin, and moxifloxacin. Additionally, moxifloxacin breakpoints were significantly lower (P<0.002) than those of gatifloxacin. The order of resistance development determined from fAUC/MIC breakpoints was levofloxacin>gatifloxacin>moxifloxacin=gemifloxacin, which may be related to structural differences within the class.

Citation

Kerry L LaPlante, Michael J Rybak, Brian Tsuji, Thomas P Lodise, Glenn W Kaatz. Fluoroquinolone resistance in Streptococcus pneumoniae: area under the concentration-time curve/MIC ratio and resistance development with gatifloxacin, gemifloxacin, levofloxacin, and moxifloxacin. Antimicrobial agents and chemotherapy. 2007 Apr;51(4):1315-20

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 17296740

View Full Text