Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Ficolins and mannose-binding lectins (MBLs) are the first components of the lectin branch of the complement system. They comprise N-terminal collagen-like domains and C-terminal pathogen-recognition domains (fibrinogen-like domains in ficolins and C-type carbohydrate-recognition domains in MBLs), which target surface-exposed N-acetyl groups or mannose-like sugars on microbial cell walls. Binding leads to activation of MBL-associated serine protease-2 (MASP-2) to initiate complement activation and pathogen neutralization. Recent studies have shown that MASP-2 binds to a short segment of the collagen-like domain of MBL. However, the interaction between ficolins and MASP-2 is relatively poorly understood. In this study, we show that the MASP-2 binding site on rat ficolin-A is also located within the collagen-like domain and encompasses a conserved motif that is present in both MBLs and ficolins. Characterization of this motif using site-directed mutagenesis reveals that a lysine residue in the X position of the Gly-X-Y collagen repeat, Lys(56) in ficolin-A, which is present in all ficolins and MBLs known to activate complement, is essential for MASP-2 binding. Adjacent residues also make important contributions to binding as well as to MASP activation probably by stabilizing the local collagen helix. Equivalent binding sites and comparable activation kinetics of MASP-2 suggest that complement activation by ficolins and MBLs proceeds by analogous mechanisms.

Citation

Umakhanth Venkatraman Girija, Alister W Dodds, Silke Roscher, Kenneth B M Reid, Russell Wallis. Localization and characterization of the mannose-binding lectin (MBL)-associated-serine protease-2 binding site in rat ficolin-A: equivalent binding sites within the collagenous domains of MBLs and ficolins. Journal of immunology (Baltimore, Md. : 1950). 2007 Jul 01;179(1):455-62

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 17579066

View Free Full Text