Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Abdominal surgery is associated with a significant risk for incisional herniation. Hernia repair is routinely performed by implantation of synthetic meshes. Such meshes may cause serious adhesions between the implanted material and organs leading to intestinal obstruction or enterocutaneous fistulas. This study compares three knitted meshes for their capacity to prevent adhesion formation in an in vivo study. The meshes evaluated are polypropylene (Prolene), polypropylene coated with oxygenated regenerated cellulose-in principle-a biodegradable biomaterial (Proceed, and Prolene coated with a nondegradable copolymer of the hydrophilic building block N-vinyl pyrrolidone (NVP) and the hydrophobic building block n-butylmethacrylate (BMA). The meshes were implanted in the abdomen of rats (follow-up 7 or 30 days). After 7 days, the formation of adhesions decreased in the order: Prolene > NVP/BMA-coated Prolene > Proceed; after 30 days, this order changed into: Proceed > Prolene > NVP/BMA-coated Prolene. Both at 7 and at 30 days, Proceed was the only mesh surrounded by macrophage cells that contained foreign materials, presumably degradation products of the (biodegradable) surface coating. The data indicate that long-term protection of implanted meshes against excessive adhesions may be achieved through stable biocompatible hydrogel surface coatings.

Citation

Pieter J Emans, Marc H F Schreinemacher, Marion J J Gijbels, Geerard L Beets, Jan-Willem M Greve, Leo H Koole, Nicole D Bouvy. Polypropylene meshes to prevent abdominal herniation. Can stable coatings prevent adhesions in the long term? Annals of biomedical engineering. 2009 Feb;37(2):410-8

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 19034665

View Full Text