Correlation Engine 2.0
Clear Search sequence regions


The molecular details of the biogenesis of double-membraned autophagosomes are poorly understood. We identify the Saccharomyces cerevisiae AAA-adenosine triphosphatase Cdc48 and its substrate-recruiting cofactor Shp1/Ubx1 as novel components needed for autophagosome biogenesis. In mammals, the Cdc48 homologue p97/VCP and the Shp1 homologue p47 mediate Golgi reassembly by extracting an unknown monoubiquitinated fusion regulator from a complex. We find no requirement of ubiquitination or the proteasome system for autophagosome biogenesis but detect interaction of Shp1 with the ubiquitin-fold autophagy protein Atg8. Atg8 coupled to phosphatidylethanolamine (PE) is crucial for autophagosome elongation and, in vitro, mediates tethering and hemifusion. Interaction with Shp1 requires an FK motif within the N-terminal non-ubiquitin-like Atg8 domain. Based on our data, we speculate that autophagosome formation, in contrast to Golgi reassembly, requires a complex in which Atg8 functionally substitutes ubiquitin. This, for the first time, would give a rationale for use of the ubiquitin-like Atg8 during macroautophagy and would explain why Atg8-PE delipidation is necessary for efficient macroautophagy.

Citation

Roswitha Krick, Sebastian Bremer, Evelyn Welter, Petra Schlotterhose, Yvonne Muehe, Eeva-Liisa Eskelinen, Michael Thumm. Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. The Journal of cell biology. 2010 Sep 20;190(6):965-73

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20855502

View Free Full Text