Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Unc93b is an endoplasmic reticulum (ER)-resident transmembrane protein that serves to bind and traffic toll-like receptors (TLRs) from the ER to their appropriate subcellular locations for ligand sensing. Because of its role in TLR trafficking, Unc93b is necessary for an effective innate immune response to coxsackievirus B3 (CVB), a positive-sense single stranded RNA virus belonging to the enterovirus family. Here, we show that Unc93b is cleaved by a CVB-encoded cysteine protease (3Cpro) during viral replication. Further, we define a role for Unc93b in the induction of apoptotic cell death and show that expression of wild-type Unc93b, but not a mutant incapable of binding TLRs or exiting the ER (H412R), induces apoptosis. Furthermore, we show that cellular caspases activated during apoptosis directly cleave Unc93b. Interestingly, we show that the 3Cpro- and caspase-mediated cleavage of Unc93b both occur within ten amino acids in the distal N-terminus of Unc93b. Mechanistically, neither caspase-mediated nor 3Cpro-mediated cleavage of Unc93b altered its trafficking function, inhibited its role in facilitating TLR3 or TLR8 signaling, or altered its apoptosis-inducing effects. Taken together, our studies show that Unc93b is targeted by both viral- and host cell-specific proteases and identify a function of Unc93b in the induction of apoptotic cell death.

Citation

Katharine G Harris, Carolyn B Coyne. Unc93b Induces Apoptotic Cell Death and Is Cleaved by Host and Enteroviral Proteases. PloS one. 2015;10(10):e0141383

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 26509685

View Full Text