Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Proinflammatory signaling by toll-like receptors (TLRs) likely contributes to biologic responses to wear particles causing aseptic loosening. We recently reported associations with aseptic loosening in patients with polymorphisms in the locus encoding an adapter protein specific for TLR-2 and TLR-4 known as toll/interleukin-1 receptor domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal). To directly examine the contribution of TIRAP/Mal, we tested the hypothesis that TIRAP/Mal deficiency reduces the activity of wear particles. Signaling by TLR-2 and TLR-4 through TIRAP/Mal can be activated by bacterial pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide or endogenous alarmins. To distinguish between those possibilities, we tested the hypothesis that the effects of TIRAP/Mal depend on the adherence of bacterial PAMPs to the particles. In vitro mRNA levels and secretion of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were measured after incubating wild-type and TIRAP/Mal(-/-) macrophages in the presence or absence of titanium particles with adherent bacterial debris, so-called endotoxin-free particles, or particles with adherent lipopolysaccharide. In vivo osteolysis was measured after implanting titanium particles on the calvaria of wild-type and TIRAP/Mal(-/-) mice. TIRAP/Mal deficiency significantly inhibited the activity of titanium particles with adherent bacterial debris to stimulate in vivo osteolysis and in vitro cytokine mRNAs and secretion. Those effects are dependent on adherent PAMPs because removal of >99% of the adherent bacterial debris from the particles significantly reduced their activity and the remaining activity was not dependent on TIRAP/Mal. Moreover, adherence of highly purified lipopolysaccharide to the endotoxin-free particles reconstituted the activity and the dependence on TIRAP/Mal. TIRAP/Mal deficiency reduces inflammatory responses and osteolysis induced by particles with adherent PAMPs. Our results, coupled with the genetic associations between aseptic loosening and polymorphisms within the TIRAP/Mal locus, support TLR signaling through TIRAP/Mal as one of the factors that enhances the activity of wear particles and further support the hypothesis that bacterial PAMPs likely contribute to aseptic loosening in a subset of patients. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

Citation

Christopher P Bechtel, Jeremy J Gebhart, Joscelyn M Tatro, Endre Kiss-Toth, J Mark Wilkinson, Edward M Greenfield. Particle-Induced Osteolysis Is Mediated by TIRAP/Mal in Vitro and in Vivo: Dependence on Adherent Pathogen-Associated Molecular Patterns. The Journal of bone and joint surgery. American volume. 2016 Feb 17;98(4):285-94

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 26888676

View Full Text