Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

FOXP3+CD4+ regulatory T cells (Tregs) are critical for immune homeostasis and respond to local tissue cues, which control their stability and function. We explored here whether developmental endothelial locus-1 (DEL-1), which, like Tregs, increases during resolution of inflammation, promotes Treg responses. DEL-1 enhanced Treg numbers and function at barrier sites (oral and lung mucosa). The underlying mechanism was dissected using mice lacking DEL-1 or expressing a point mutant thereof, or mice with T cell-specific deletion of the transcription factor RUNX1, identified by RNA sequencing analysis of the DEL-1-induced Treg transcriptome. Specifically, through interaction with αvβ3 integrin, DEL-1 promoted induction of RUNX1-dependent FOXP3 expression and conferred stability of FOXP3 expression upon Treg restimulation in the absence of exogenous TGF-β1. Consistently, DEL-1 enhanced the demethylation of the Treg-specific demethylated region (TSDR) in the mouse Foxp3 gene and the suppressive function of sorted induced Tregs. Similarly, DEL-1 increased RUNX1 and FOXP3 expression in human conventional T cells, promoting their conversion into induced Tregs with increased TSDR demethylation, enhanced stability, and suppressive activity. We thus uncovered a DEL-1/αvβ3/RUNX1 axis that promotes Treg responses at barrier sites and offers therapeutic options for modulating inflammatory/autoimmune disorders.

Citation

Xiaofei Li, Alessandra Colamatteo, Lydia Kalafati, Tetsuhiro Kajikawa, Hui Wang, Jong-Hyung Lim, Khalil Bdeir, Kyoung-Jin Chung, Xiang Yu, Clorinda Fusco, Antonio Porcellini, Salvatore De Simone, Giuseppe Matarese, Triantafyllos Chavakis, Veronica De Rosa, George Hajishengallis. The DEL-1/β3 integrin axis promotes regulatory T cell responses during inflammation resolution. The Journal of clinical investigation. 2020 Dec 01;130(12):6261-6277

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32817592

View Full Text