Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In this study, Pediococcus pentococcus PP04 isolated from the Northeast pickled cabbage had good gastrointestinal tolerance and can colonize in the intestine stably. C57BL/6N mice were fed a high-fat diet to build animal models and treated with Pediococcus pentosaceus PP04 to evaluate the antihyperlipidemia effect. After 8 weeks, the indicators of hyperlipidemia, liver injury, and inflammation were measured. The treatment of P. pentosaceus PP04 reduced the gain of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), free fatty acids (FFAs), leptin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), lipopolysaccharides (LPS), and tumor necrosis factor-α (TNF-α) significantly. The western blotting results suggested P. pentosaceus PP04 ameliorated high-fat diet-induced hyperlipidemia by the AMPK signaling pathway, which stimulated lipolysis via upregulation of PPARα and inhibited lipogenesis by downregulation of SREBP-1c, fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD1) mainly. Furthermore, P. pentosaceus PP04 improved high-fat diet-induced oxidative stress effectively by triggering the Nrf2/CYP2E1 signaling pathway that enhanced the antioxidant activity including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).

Citation

Yu Wang, Ying You, Yuan Tian, Haiyue Sun, Xia Li, Xiujuan Wang, Yuhua Wang, Jingsheng Liu. Pediococcus pentosaceus PP04 Ameliorates High-Fat Diet-Induced Hyperlipidemia by Regulating Lipid Metabolism in C57BL/6N Mice. Journal of agricultural and food chemistry. 2020 Dec 23;68(51):15154-15163

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33300795

View Full Text