Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Children living with HIV frequently show high plasma levels of fibroblast growth factor-2 (FGF-2/bFGF). FGF-2 accelerates the progression of several experimental kidney diseases; however, the role of circulating FGF-2 in childhood HIV-chronic kidney diseases (HIV-CKDs) is unknown. We carried out this study to determine whether high plasma FGF-2 levels were associated with the development of HIV-CKDs in children. The plasma and urine FGF-2 levels were measured in 84 children (< 12 years of age) living with HIV during the pre-modern antiretroviral era, and followed for at least 3 years to determine the prevalence of proteinuria and HIV-CKDs. We also assessed the distribution of the kidney FGF-2 binding sites by autoradiography and Alcian blue staining, and explored potential mechanisms by which circulating FGF-2 may precipitate HIV-CKDs in cultured kidney epithelial and mononuclear cells derived from children with HIV-CKDs. High plasma FGF-2 levels were associated with a high viral load. Thirteen children (~ 15%) developed HIV-CKDs and showed a large reservoir of FGF-2 low-affinity binding sites in the kidney, which can facilitate the recruitment of circulating FGF-2. Children with high plasma and urine FGF-2 levels had 73-fold increased odds (95% CI 9-791) of having HIV-CKDs relative to those with normal FGF-2 values. FGF-2 induced the proliferation and decreased the expression of APOL-1 mRNA in podocytes, and increased the attachment and survival of infected mononuclear cells cultured from children with HIV-CKDs. High plasma FGF-2 levels appear to be an additional risk factor for developing progressive childhood HIV-CKDs. © 2021. IPNA.

Citation

Patricio E Ray, Jinliang Li, Jharna R Das, Jing Yu. Association of circulating fibroblast growth factor-2 with progression of HIV-chronic kidney diseases in children. Pediatric nephrology (Berlin, Germany). 2021 Dec;36(12):3933-3944

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34125285

View Full Text