Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The wound-healing process is a natural response to burn injury. Resveratrol (RES) may have potential as a therapy for wound healing, but how and whether RES regulates skin repair remains poorly understood. Human epidermal keratinocyte (HaCaT) cells were treated with lipopolysaccharide (LPS), and a mouse skin wound-healing model was established. Cell viability and apoptosis were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide or flow cytometry. Cell proliferation was assessed by cell viability and colony-formation analyses. Cell migration was tested by wound-healing analysis. The microRNA-212 (miR-212) and caspase-8 (CASP8) levels were determined by quantitative reverse transcription polymerase chain reaction and western blotting. The correlation between miR-212 and CASP8 was analyzed by dual-luciferase reporter analysis. Skin wound healing in mice was assessed by measuring the wound area and gap after hematoxylin-eosin (HE) staining. RES reduced the LPS-induced reduction in viability and apoptosis in HaCaT cells. miR-212 expression was reduced by LPS and increased by exposure to RES. RES promoted cell proliferation and migration after LPS treatment by increasing miR-212 levels. CASP8 was a target of miR-212. CASP8 silencing promoted cell proliferation and migration, which was reversed by miR-212 knockdown in LPS-treated HaCaT cells. RES promoted skin wound healing in mice, which was reduced by miR-212 knockdown. Thus, RES facilitates cell proliferation and migration in LPS-treated HaCaT cells and promotes skin wound-healing in a mouse model by regulating the miR-212/CASP8 axis. © 2021. The Author(s), under exclusive licence to United States and Canadian Academy of Pathology.

Citation

Yu Liu, Wu Xiong, Chu-Wang Wang, Jian-Ping Shi, Zhi-Qiang Shi, Jian-Da Zhou. Resveratrol promotes skin wound healing by regulating the miR-212/CASP8 axis. Laboratory investigation; a journal of technical methods and pathology. 2021 Oct;101(10):1363-1370

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34234270

View Full Text