Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Protein-based targeting reagents, such as antibodies and non-antibody scaffold proteins, are rapidly inactivated in the upper gastrointestinal (GI) tract. Hydrochloric acid in gastric juice denatures proteins and activates pepsin, concentrations of which reach 1 mg/mL in the mammalian stomach. Two stable scaffold proteins (nanobody and nanofitin), previously developed to be protease-resistant, were completely digested in less than 10 min at 100-fold lower concentration of pepsin than found in the stomach. Here we present gastrobodies, a protein scaffold derived from Kunitz soybean trypsin inhibitor (SBTI). SBTI is highly resistant to the challenges of the upper GI tract, including digestive proteases, pH 2 and bile acids. Computational prediction of SBTI's evolvability identified two nearby loops for randomization, to create a potential recognition surface which was experimentally validated by alanine scanning. We established display of SBTI on full-length pIII of M13 phage. Phage selection of gastrobody libraries against the glucosyltransferase domain of Clostridium difficile toxin B (GTD) identified hits with nanomolar affinity and enzyme inhibitory activity. Anti-GTD binders retained high stability to acid, digestive proteases and heat. Gastrobodies show resilience to exceptionally harsh conditions, which should provide a foundation for targeting and modulating function within the GI tract. © 2021. The Author(s).

Citation

Niels Wicke, Mike R Bedford, Mark Howarth. Gastrobodies are engineered antibody mimetics resilient to pepsin and hydrochloric acid. Communications biology. 2021 Aug 11;4(1):960

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34381153

View Full Text