Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates. © 2021 The Author(s).

Citation

Lauren J Rice, Heath Ecroyd, Antoine M van Oijen. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Computational and structural biotechnology journal. 2021;19:4711-4724


PMID: 34504664

View Full Text