Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In order to reverse tumor immunosuppressive microenvironment and improve antitumor immune effect based on immune checkpoint blocking, a mannose-modified liposome-based CpG ODNs and PD-L1 antagonistic peptides (P) co-delivery system (HA/M-Lipo CpG-P) was constructed, in which hyaluronic acid (HA) coating was supposed to improve the systemic circulation stability and thereby promote its accumulation in tumor tissues. When the HA/M-Lipo CpG-P complexes enter the tumor tissues, HA will be hydrolyzed under the action of hyaluronidase, exposing P peptides. Then, P peptides linked by octapeptides that can be cleaved by matrix metalloproteinases (MMPs) are released into tumor tissues under the action of MMPs, exerting a blocking effect in the PD-1/PD-L1 pathway. The M-Lipo CpG complexes can recognize macrophage surface mannose receptors through its surface modified mannose molecules, and promote the intracellular delivery of CpG ODNs, thereby activating macrophages. The results showed that HA/M-Lipo CpG-P complexes successfully reversed M2-type macrophages in tumor microenvironment (TME) to M1, thereby activating anti-tumor related immune cells and inhibiting tumor growth. Moreover, the HA/M-Lipo CpG-P complexes showed a better tumor inhibitory effect than the HA/M-Lipo CpG or the HA/M-Lipo-P (monotherapy) treatment groups. Overall, HA/M-Lipo CpG-P complexes provide a promising co-delivery strategy for targeting tumors to improve the antitumor effect based on immune checkpoint blockade. Copyright © 2021. Published by Elsevier B.V.

Citation

Min Zhang, Zhou Fang, Haitao Zhang, Mingxiao Cui, Mingfu Wang, Kehai Liu. Reversing tumor immunosuppressive microenvironment via targeting codelivery of CpG ODNs/PD-L1 peptide antagonists to enhance the immune checkpoint blockade-based anti-tumor effect. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2022 Jan 01;168:106044

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34666183

View Full Text