Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Atenolol is a widely prescribed beta-blocker that has been detected in wastewater at concentrations up to 300 μg/L. The parent compound and its transformation products pose risks to aquatic organisms. Efficient atenolol degrading microorganism has yet to be identified, and its biodegradation pathway is unknown. In this study, Hydrogenophaga sp. YM1 isolated from activated sludge can degrade atenolol efficiently (286.1 ± 4.0 μg/g dry wt/h in actual wastewater), where atenolol acid, and four newly detected products (4-hydroxyphenylacetic acid, 3-(isopropylamino)-1,2-propanediol, 3-amino-1,2-propanediol and 4-(1-amino-2-hydroxy-3-propoxy) benzeneacetic acid) were the main intermediates. Key genes involved in atenolol degradation were proposed based on RNA-seq and validated by RT-qPCR. The ether bond cleavage of atenolol acid was the rate-limiting step likely catalyzed by the α-ketoglutarate dependent 2,4-dichlorophenoxyacetate dioxygenase. The further degradation of 4-hydroxyphenylacetic acid followed the homoprotocatechuate degradation pathway, enabling complete conversion to CO2. Acetate addition (39-156 mg COD/L) under aerobic condition enhanced atenolol degradation by 29-37% and decreased the accumulation of atenolol acid, likely because acetate oxidation provided α-ketoglutarate and additional reducing power. Activated sludge core microorganisms have limited atenolol mineralization potentials. Enriching Hydrogenophaga-like populations and/or providing such as acetate can drive more complete conversion of atenolol in natural and engineered biosystems. Copyright © 2021 Elsevier B.V. All rights reserved.

Citation

Ming Yi, Qi Sheng, Zhenmei Lv, Huijie Lu. Novel pathway and acetate-facilitated complete atenolol degradation by Hydrogenophaga sp. YM1 isolated from activated sludge. The Science of the total environment. 2022 Mar 01;810:152218

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34890665

View Full Text