A A Mongin, Z Cai, H K Kimelberg
Division of Neurosurgery, Albany Medical College, Albany, New York 12208, USA.
The American journal of physiology 1999 OctCell swelling results in regulatory activation of multiple conductive anion pathways permeable toward a broad spectrum of intracellular organic osmolytes. Here, we explore the involvement of extracellular and intracellular Ca(2+) in volume-dependent [(3)H]taurine efflux from primary cultured astrocytes and compare the Ca(2+) sensitivity of this efflux in slow (high K(+) medium induced) and fast (hyposmotic medium induced) cell swelling. Neither Ca(2+)-free medium nor Ca(2+)-channel blockers prevented the volume-dependent [(3)H]taurine release. In contrast, loading cells with the membrane-permeable Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM suppressed [(3)H]taurine efflux by 65-70% and 25-30% under high-K(+) and hyposmotic conditions, respectively. Fura 2 measurements confirmed that BAPTA-AM, but not Ca(2+)-free media, significantly reduced resting intracellular Ca(2+) concentration ([Ca(2+)](i)). The calmodulin antagonists trifluoperazine and fluphenazine reversibly and irreversibly, respectively, inhibited the high-K(+)-induced [(3)H]taurine release, consistent with their known actions on calmodulin. In hyposmotic conditions, the effects were less pronounced. These data suggest that volume-dependent taurine release requires minimal basal [Ca(2+)](i) and involves calmodulin-dependent step(s). Quantitative differences in Ca(2+)/calmodulin sensitivity of high-K(+)-induced and hyposmotic medium-induced taurine efflux are due to both the effects of the inhibitors on high-K(+)-induced cell swelling and their effects on transport systems and/or signaling mechanisms determining taurine efflux.
A A Mongin, Z Cai, H K Kimelberg. Volume-dependent taurine release from cultured astrocytes requires permissive [Ca(2+)](i) and calmodulin. The American journal of physiology. 1999 Oct;277(4 Pt 1):C823-32
Mesh Tags
Substances
PMID: 10516112
View Full Text