Correlation Engine 2.0
Clear Search sequence regions


Vasoconstrictors activate the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 in rat aortic smooth muscle, but the mechanism is unknown. Efflux of (86)Rb(+) from rat aorta in response to phenylephrine (PE) was measured in the absence and presence of bumetanide, a specific inhibitor of NKCC1. Removal of extracellular Ca(2+) completely abolished the activation of NKCC1 by PE. This was not due to inhibition of Ca(2+)-dependent K(+) channels since blocking these channels with Ba(2+) in Ca(2+)-replete solution did not prevent activation of NKCC1 by PE. Stimulation of NKCC1 by PE was inhibited 70% by 75 microM ML-9, 97% by 2 microM wortmannin, and 70% by 2 mM 2,3-butanedione monoxime, each of which inhibited isometric force generation in aortic rings. Bumetanide-insensitive Rb(+) efflux, an indication of Ca(2+)-dependent K(+) channel activity, was reduced by ML-9 but not by the other inhibitors. Stretching of aortic rings on tubing to increase lumen diameter to 120% of normal almost completely blocked the stimulation of NKCC1 by PE without inhibiting the stimulation by hypertonic shrinkage. We conclude that activation of the Na(+)-K(+)-2Cl(-) cotransporter by PE is the direct result of smooth muscle contraction through Ca(2+)-dependent activation of myosin light chain kinase. This indicates that the Na(+)-K(+)-2Cl(-) cotransporter is regulated by the contractile state of vascular smooth muscle.

Citation

F Akar, G Jiang, R J Paul, W C O'Neill. Contractile regulation of the Na(+)-K(+)-2Cl(-) cotransporter in vascular smooth muscle. American journal of physiology. Cell physiology. 2001 Aug;281(2):C579-84

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 11443057

View Full Text