Correlation Engine 2.0
Clear Search sequence regions


In the heterocellular toad skin epithelium the beta-adrenergic receptor agonist isoproterenol activates cyclic AMP-dependent Cl(-) channels that are not located in the principal cells. With four experimental approaches, in the present study, we tested the hypothesis that the signalling pathway targets cystic fibrosis transmembrane conductance regulator (CFTR)-chloride channels of mitochondria-rich cells. (i) Serosal application of isoproterenol (log(10)EC(50)=-7.1+/-0.2; Hill coefficient=1.1+/-0.2), as well as noradrenaline, activated an anion pathway with an apical selectivity sequence, G(Cl)>G(Br)> or =G(NO(3))>G(I), comparable to the published selectivity sequence of cloned human CFTR expressed in Xenopus oocytes. (ii) Known modulators of human CFTR, glibenclamide (200 micromol/l) and genistein (50 micromol/l), depressed and activated, respectively, the receptor-stimulated G(Cl). Genistein did not modify the anion selectivity. (iii) Transcellular voltage clamp studies of single isolated mitochondria-rich cells revealed functional beta-adrenergic receptors on the basolateral membrane. With approximately 60,000 mitochondria-rich cells per cm(2), the saturating activation of 11.9+/-1.6 nS/cell accounted for the measured isoproterenol-activated transepithelial conductance of 600-900 microS/cm(2). In forskolin-stimulated cells, glibenclamide (200 micromol/l) reversibly inhibited the transcellular conductance by 9.6+/-1.6 nS/cell. (iv) With primers constructed from cloned Xenopus CFTR and PCR amplification of reverse-transcribed mRNA from toad skin, full-length Bufo CFTR cDNA was generated. The derived protein of 1466 residues shows 86% homology with xCFTR and 89% homology with hCFTR. All major functional sequences, that is, the R- and the NBF1- and NBF2-domains are well-conserved as are the predicted transmembrane segments proposed to form the pore of the channel protein. These new results taken together with our previously identified small-conductance CFTR-like Cl(-) channel in the apical membrane of the mitochondria-rich cells lead to the conclusion that the toad's CFTR gene codes for a functional Cl(-) channel in the apical plasma membrane of this minority cell type.

Citation

Erik Hviid Larsen, Jan Amstrup, Niels J Willumsen. Beta-adrenergic receptors couple to CFTR chloride channels of intercalated mitochondria-rich cells in the heterocellular toad skin epithelium. Biochimica et biophysica acta. 2003 Dec 30;1618(2):140-52

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 14729151

View Full Text