Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

We assessed the effects of tramadol, a centrally acting analgesic, and its major metabolite, on neurotransmitter-gated ion channels. Tramadol binds to mu-opioid receptors with low affinity and inhibits reuptake of monoamines in the central nervous system. These actions are believed to primarily contribute to its antinociceptive effects. However, little is known about other sites of tramadol's action. We tested the effects of tramadol and its M1 metabolite (0.1-100 microM) on human recombinant neurotransmitter-gated ion channels, including glycine, gamma-aminobutyric acid(A) (GABA(A)), and N-methyl-D-aspartate (NMDA) receptors, expressed in Xenopus oocytes. Tramadol and M1 metabolite did not have any effects on glycine receptors. GABA(A) receptors were significantly inhibited only at large concentrations (100 microM). NMDA receptors were inhibited in a concentration-dependent manner. Tramadol and M1 metabolite inhibited the glutamate-concentration response curve without changing the half-maximal effective concentration or the Hill coefficient, indicating a noncompetitive inhibition. This study suggests that glycine receptors do not provide the antinociceptive effect of tramadol and that the inhibition of GABA(A) receptors at large concentration might correlate with convulsions. The inhibitory effect on NMDA receptors may contribute to the antinociceptive effect of tramadol at relatively large concentrations.

Citation

Koji Hara, Kouichiro Minami, Takeyoshi Sata. The effects of tramadol and its metabolite on glycine, gamma-aminobutyric acidA, and N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Anesthesia and analgesia. 2005 May;100(5):1400-1405

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 15845694

View Full Text