Correlation Engine 2.0
Clear Search sequence regions


  • ACC1 (1)
  • acetates (2)
  • azo compounds (2)
  • citrates (2)
  • cytosol (2)
  • gene (1)
  • humans (1)
  • lipid (4)
  • liver (1)
  • malates (2)
  • malonyl coa (1)
  • mice (1)
  • mice obese (1)
  • oil red o (1)
  • rna (4)
  • rna transport (1)
  • sequence analysis (1)
  • Slc25a10 (12)
  • time factors (1)
  • transport proteins (2)
  • Sizes of these terms reflect their relevance to your search.

    Mitochondrial solute carrier family 25 member 10 (Slc25a10) transports dicarboxylates such as malate or succinate across the mitochondrial inner membrane. Although fatty acid synthesis in adipose tissue or the liver is initiated by citrate transport in exchange for malate across the mitochondrial membrane, the transporter responsible for supplying malate during citrate transport has not been identified. In the present study, we clarified the role of Slc25a10 in supplying malate for citrate transport and examined the effect of Slc25a10 suppression on the lipogenic pathway and lipid accumulation. We have reported an Slc25a10 increase in white adipose tissue in obese mouse models and a decrease in a fasted mouse model using expression profiles. Next, we examined the effect of Slc25a10 suppression by small interfering RNA on citrate transport in the lipogenic cell lines HepG2 and 3T3-L1. We observed that inhibition of malate transport by Slc25a10 suppression significantly reduced the citrate transport from the mitochondria to the cytosol. We also found that suppression of Slc25a10 down-regulated the lipogenic pathway, indicated by decreases in ACC1 expression and malonyl-CoA level. Furthermore, suppression of Slc25a10 decreased triglyceride lipid accumulation in adipose-differentiated 3T3-L1 cells. These results suggested that Slc25a10 plays an important role in supplying malate for citrate transport required for fatty acid synthesis and indicated that inhibition of Slc25a10 might effectively reduce lipid accumulation in adipose tissues.

    Citation

    Shinji Mizuarai, Satomi Miki, Hiromitsu Araki, Kazuhiko Takahashi, Hidehito Kotani. Identification of dicarboxylate carrier Slc25a10 as malate transporter in de novo fatty acid synthesis. The Journal of biological chemistry. 2005 Sep 16;280(37):32434-41

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 16027120

    View Full Text