Correlation Engine 2.0
Clear Search sequence regions


Central serotonin2C (5-HT2C) receptors are known to play a role in the mechanism of action of the antipsychotic drugs (APDs) clozapine and haloperidol. However, evidence for the involvement of the constitutive activity of 5-HT2C receptors in the dopamine (DA)ergic effects of APDs is lacking in vivo. Using in vivo microdialysis in halothane-anesthetized rats, we assessed the ability of selective 5-HT2C compounds to modulate the release of DA induced by haloperidol and clozapine in the nucleus accumbens and striatum. Both APDs induced a dose-dependent increase in accumbal and striatal DA extracellular levels. The effect of .01 mg/kg haloperidol was potentiated by the 5-HT2C inverse agonist SB 206553 (5 mg/kg) but unaltered by the 5-HT2C antagonists SB 243213 and SB 242084 (1 mg/kg). Conversely, the effect of 1 mg/kg clozapine, a dose able to reverse the decrease in DA outflow induced by the 5-HT2C agonist Ro 60-0175 (3 mg/kg), was unaffected by SB 206553 but blocked by SB 243213 (1 mg/kg) and SB 242084 (.3 and 1 mg/kg). These results show that clozapine and haloperidol differentially alter the constitutive activity of 5-HT2C receptors and suggest that clozapine behaves as a 5-HT2C inverse agonist in vivo.

Citation

Sylvia Navailles, Philippe De Deurwaerdère, Umberto Spampinato. Clozapine and haloperidol differentially alter the constitutive activity of central serotonin2C receptors in vivo. Biological psychiatry. 2006 Mar 15;59(6):568-75

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 16182256

View Full Text