Correlation Engine 2.0
Clear Search sequence regions


Deregulation of the phosphatidylinositol 3-kinase (PI-3K)/PDK-l/Akt signaling cascade is associated with pancreatic cancer tumor invasion, angiogenesis, and tumor progression. As such, it has been postulated that PDK-1/Akt signaling inhibitors may hold promise as novel therapeutic agents for pancreatic cancer. Disadvantages of currently available Akt inhibitors include tumor resistance, poor specificity, potential toxicity, and poor bioavailability. Previous studies have demonstrated that OSU-03012, a celecoxib derivative, specifically inhibits PDK-1 mediated phosphorylation of Akt with IC(50) values in the low muM range. Human pancreatic cancer cell lines AsPC-1, BxPC-3, Mia-PaCa 2, and PANC-1 were cultured in media containing varying concentrations of OSU-03012, 5-fluorouracil (5-FU), and gemcitabine, and changes in Akt phosphorylation and cell viability were evaluated using western blotting and a 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay, respectively. Treatment with OSU-03012 resulted in decreased PDK-1-mediated Akt phosphorylation and cell growth inhibition for all cell lines with IC(50) values ranging between 1.0 and 2.5 muM. Resistance to 5-FU and gemcitabine was observed in cell lines AsPC-1 and BxPC-3. Further analyses indicate that OSU-03012 induces both proapoptotic and antiproliferative effects in these cells. Taken together, these data suggest that OSU-03012 has potential value as a novel therapy for pancreatic cancer.

Citation

Junan Li, Jiuxiang Zhu, W Scott Melvin, Tanios S Bekaii-Saab, Ching-Shih Chen, Peter Muscarella. A structurally optimized celecoxib derivative inhibits human pancreatic cancer cell growth. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract. 2006 Feb;10(2):207-14

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 16455452

View Full Text