Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

TRIM5alpha is an important mediator of antiretroviral innate immunity influencing species-specific retroviral replication. Here we investigate the role of the peptidyl prolyl isomerase enzyme cyclophilin A in TRIM5alpha antiviral activity. Cyclophilin A is recruited into nascent human immunodeficiency virus type 1 (HIV-1) virions as well as incoming HIV-1 capsids, where it isomerizes an exposed proline residue. Here we show that cyclophilin A renders HIV-1 sensitive to restriction by TRIM5alpha in cells from Old World monkeys, African green monkey and rhesus macaque. Inhibition of cyclophilin A activity with cyclosporine A, or reducing cyclophilin A expression with small interfering RNA, rescues TRIM5alpha-restricted HIV-1 infectivity. The effect of cyclosporine A on HIV-1 infectivity is dependent on TRIM5alpha expression, and expression of simian TRIM5alpha in permissive feline cells renders them able to restrict HIV-1 in a cyclosporine A-sensitive way. We use an HIV-1 cyclophilin A binding mutant (CA G89V) to show that cyclophilin A has different roles in restriction by Old World monkey TRIM5alpha and owl monkey TRIM-Cyp. TRIM-Cyp, but not TRIM5alpha, recruits its tripartite motif to HIV-1 capsid via cyclophilin A and, therefore, HIV-1 G89V is insensitive to TRIM-Cyp but sensitive to TRIM5alpha. We propose that cyclophilin A isomerization of a proline residue in the TRIM5alpha sensitivity determinant of the HIV-1 capsid sensitizes it to restriction by Old World monkey TRIM5alpha. In humans, where HIV-1 has adapted to bypass TRIM5alpha activity, the effects of cyclosporine A are independent of TRIM5alpha. We speculate that cyclophilin A alters HIV-1 sensitivity to a TRIM5alpha-independent innate immune pathway in human cells.

Citation

Zuzana Keckesova, Laura M J Ylinen, Greg J Towers. Cyclophilin A renders human immunodeficiency virus type 1 sensitive to Old World monkey but not human TRIM5 alpha antiviral activity. Journal of virology. 2006 May;80(10):4683-90

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 16641261

View Full Text