Correlation Engine 2.0
Clear Search sequence regions


Antithrombin is a protease inhibitor that neutralizes the activity of the serine proteases of the coagulation cascade, such as factors IXa, Xa, XIa, XIIa, and thrombin by forming a 1:1 stoichiometric complex between enzyme and inhibitor via a reactive site (arginine)-active center (serine interaction). Heparin binds to lysyl residues on antithrombin and accelerates the rate of complex formation. Studies of the binding parameters and kinetic characteristics of the heparin-antithrombin-hemostatic enzyme interactions have revealed that binding of heparin to antithrombin is responsible for a approximately 1000-fold acceleration of the thrombin-antithrombin or factor IXa-antithrombin and factor Xa-antithrombin interactions (allosteric effect). The reactions between free thrombin or free factor IXa and heparin provide an additional 4- to 15-fold enhancement in the rate of these processes (approximation effect) and account for 1-2% of the total rate of enhancement. It has been shown that commercial heparin is composed of anticoagulantly active and anticoagulantly inactive species. The anticoagulantly active mucopolysaccharide contains a unique antithrombin-binding site. Anticoagulantly inactive heparin does not possess this structure and does not bind to the protease inhibitor. Anticoagulantly active heparin also contains a critical region required for the acceleration of the various enzyme-inhibitor interactions. The two different domains of the heparin molecule interact with separate areas of antithrombin and induce distinct conformational transitions within the protease inhibitor. Anticoagulantly active heparinlike molecules (most likely a heparan sulfate with an appropriate sequence for anticoagulant activity) are found on the luminal surface of the endothelium. This heparinlike substance appears to alter the conformation of antithrombin in a manner virtually identical to that of commercial heparin. Both anticoagulantly active heparin and inactive heparin are able to suppress smooth muscle cell proliferation in vitro and in vivo and can reverse the effects of mitogenic factors such as platelet-derived growth factor. Furthermore, it has been shown that bovine aortic endothelial cells produce heparinlike molecules with growth inhibitory potency.

Citation

R D Rosenberg. Role of heparin and heparinlike molecules in thrombosis and atherosclerosis. Federation proceedings. 1985 Feb;44(2):404-9

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 3155697

View Full Text