Correlation Engine 2.0
Clear Search sequence regions


A genetic basis for tetracycline resistance in cutaneous propionibacteria was suggested by comparing the nucleotide sequences of the 16S rRNA genes from 16 susceptible and 21 resistant clinical isolates and 6 laboratory-selected tetracycline-resistant mutants of a susceptible strain. Fifteen clinical isolates resistant to tetracycline were found to have cytosine instead of guanine at a position cognate with Escherichia coli 16S rRNA base 1058 in a region important for peptide chain termination and translational accuracy known as helix 34. Cytosine at base 1058 was not detected in the laboratory mutants or the tetracycline-susceptible strains. The apparent mutation was recreated by site-directed mutagenesis in the cloned E. coli ribosomal operon, rrnB, encoded by pKK3535.E. coli strains carrying the mutant plasmid were more resistant to tetracycline than those carrying the wild-type plasmid both in MIC determinations and when grown in tetracycline-containing liquid medium. These data are consistent with a role for the single 16S rRNA base mutation in clinical tetracycline resistance in cutaneous propionibacteria.

Citation

J I Ross, E A Eady, J H Cove, W J Cunliffe. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrobial agents and chemotherapy. 1998 Jul;42(7):1702-5

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 9661007

View Free Full Text