Correlation Engine 2.0
Clear Search sequence regions


P-Glycoprotein (Pgp) is responsible for the energy-dependent efflux of many natural product oncolytics. Overexpression of Pgp may result in multidrug resistance (MDR). Modulators can block Pgp efflux and sensitize multidrug resistant cells to these oncolytics. To study the interaction of modulators with Pgp, Pgp-ATPase activity was examined, using plasma membranes isolated from the multidrug-resistant cell line CEM/VLB100. A survey of modulators indicated that verapamil, trifluoperazine, and nicardipine stimulated ATPase activity by 1.3- to 1.8-fold, whereas two others, trimethoxybenzoylyohimbine (TMBY) and vindoline, had no effect. Further evaluation showed that TMBY completely blocked the stimulation by verapamil of ATPase activity by competitive inhibition, with a Ki of 2.1 microM. When the effects of these two modulators on the formation of the enzyme-nucleotide complex important in the catalytic cycle were examined, verapamil increased the amount of vanadate-trapped 8-azido-[alpha-32P]ATP bound to Pgp by two-fold, whereas TMBY had no effect. Moreover, TMBY blocked the verapamil stimulation of vanadate-8-azido-[alpha-32P]ATP. Together, these data indicate that verapamil and TMBY bind to Pgp at a common site or overlapping sites, but only verapamil results in enhanced Pgp-ATP hydrolysis and formation of the vanadate-nucleotide-enzyme complex.

Citation

R L Shepard, M A Winter, S C Hsaio, H L Pearce, W T Beck, A H Dantzig. Effect of modulators on the ATPase activity and vanadate nucleotide trapping of human P-glycoprotein. Biochemical pharmacology. 1998 Sep 15;56(6):719-27

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 9751076

View Full Text