Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

This study examines the hypothesis that glutamate tonically suppresses the activity of the enzyme aromatic L-amino acid decarboxylase (AADC), and hence the biosynthesis of dopamine, to explain how antagonists of glutamate receptors might potentiale the motor actions of L-DOPA in animal models of Parkinson's disease. A variety of glutamate antagonists were therefore administered acutely to normal rats, which were sacrificed 30-60 min later and AADC activity assayed in the substantia nigra pars reticulata (SNr) and corpus striatum (CS). The NMDA receptor-ion channel antagonists MK 801, budipine, amantadine, memantine and dextromethorphan all caused a pronounced in creased in AADC activity, more especially in the SNr than CS. The NMDA glycine site antagonist (R)-HA 966 produced a modest increase in AADC activity in the CS but not SNr, whilst the NMDA polyamine site antagonist eliprodil, the NMDA competitive antagonist CGP 40116 and the AMPA antagonist NBQX were without effect. The results suggest that an increase in dopamine synthesis might contribute to the L-DOPA-facilitating actions of some glutamate antagonists.

Citation

A Fisher, C S Biggs, M S Starr. Effects of glutamate antagonists on the activity of aromatic L-amino acid decarboxylase. Amino acids. 1998;14(1-3):43-9

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 9871440

View Full Text