Correlation Engine 2.0
Clear Search sequence regions


The non-steroidal anti-inflammatory drugs (NSAIDs) are diverse group of compounds used for the treatment of inflammation, since the introduction of acetylsalicylic acid in 1899. Traditional (first generation) NSAIDs exert antiinflammatory, analgesic, and antipyretic effects through the blockade of prostaglandin synthesis via non-selective inhibition of cyclooxygenase (COX-1 and COX-2) isozymes. Their use is associated with side effects such as gastrointestinal and renal toxicity. A number of selective (second generation) COX-2 inhibitors (rofecoxib, celecoxib, valdecoxib etc.) were developed as safer NSAIDs with improved gastric safety profile. Observation of increased cardiovascular risks in APPROVe (Adenomatous Polyp Prevention on Vioxx) study sent tremors and led to voluntary withdrawn of Vioxx (rofecoxib) by Merck from the market in September 2004 followed by Bextra (valdecoxib) in 2005 raising a question on the safety of selective COX-2 inhibitors. This leads to the belief that these effects are mechanism based and may be class effect. However, some studies suggested association of traditional NSAIDs with similar effects requiring a relook into the whole class of NSAIDs rather than simply victimizing the selective COX-2 inhibitors. Recognition of new avenues for selective COX-2 inhibitors such as cancer, Alzheimer's disease, Parkinson's disease, schizophrenia, major depression, ischemic brain injury and diabetic peripheral nephropathy has kindled the interest in these compounds. This review highlights the various structural classes of selective COX-2 inhibitors developed during past seven years (2003-2009) with special emphasis on diaryl-hetero/carbo-cyclic class of compounds. Molecular modeling aspects are also briefly discussed.

Citation

Asit K Chakraborti, Sanjeev K Garg, Raj Kumar, Hashim F Motiwala, Pradeep S Jadhavar. Progress in COX-2 inhibitors: a journey so far. Current medicinal chemistry. 2010;17(15):1563-93

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20166930

View Full Text