Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Mitochondrial fusion and fission are important aspects of eukaryotic cell function that permit the adoption of varied mitochondrial morphologies depending upon cellular physiology. We previously observed that ethacrynic acid (EA) induced mitochondrial fusion in cultured BSC-1 and CHO/wt cells. However, the mechanism responsible for it was not clear since EA has a number of known cellular effects including glutathione (GSH) depletion and alkylation of cysteine residues. To gain insight, we have tested the effects of a variety of compounds on EA induced cellular toxicity and mitochondrial fusion. N-acetyl cysteine (NAC), a GSH precursor, was found to abrogate both the toxic and fusion-inductive effects, whereas diethylmaleate (dEM), a GSH depletor, potentiated both these effects in a dose-dependent manner. However, treatment with dEM alone, which depleted GSH to the same degree as EA, did not induce mitochondrial fusion. These results indicate that although detoxification of EA via formation of GSH conjugates is dependant upon GSH levels, the depletion of GSH by EA is not responsible for its effect on mitochondrial fusion. Dihydro-EA (DH-EA), a saturated EA analogue, lacked EA's toxicity and effect on fusion, indicating that the alpha,beta-unsaturated ketone is central to its observed effects. N-ethylmaleimide (NEM), another well-known cysteine-alkylator, also induced mitochondrial fusion at near toxic concentrations. These data suggests that cysteine-alkylation is the causative factor for fusion and toxicity. In live BSC-1 cells, EA induced fusion of mitochondria occurred very rapidly (<20 min), which suggests that it is inducing fusion by modifying certain critical cysteine residue(s) in proteins involved in the process. 2004 Wiley-Liss, Inc.

Citation

Timothy J Bowes, Radhey S Gupta. Induction of mitochondrial fusion by cysteine-alkylators ethacrynic acid and N-ethylmaleimide. Journal of cellular physiology. 2005 Mar;202(3):796-804

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 15389563

View Full Text