Correlation Engine 2.0
Clear Search sequence regions

The muscle-type nicotinic acetylcholine receptor has two nonidentical binding sites for ligands. The selectivity of acetylcholine and the competitive antagonists (+)-tubocurarine and metocurine for adult mouse receptors is known. Here, we examine the site selectivity for four other competitive antagonists: cisatracurium, pancuronium, vecuronium, and rocuronium. We rapidly applied acetylcholine to outside-out patches from transfected BOSC23 cells and measured macroscopic currents. We have reported the IC(50) of the antagonists individually in prior publications. Here, we determined inhibition by pairs of competitive antagonists. At least one antagonist was present at a concentration producing > or =67% receptor inhibition. Metocurine shifted the apparent IC(50) of (+)-tubocurarine in quantitative agreement with complete competitive antagonism. The same was observed for pancuronium competing with vecuronium. However, pancuronium and vecuronium each shifted the apparent IC(50) of (+)-tubocurarine less than expected for complete competition but more than expected for independent binding. The situation was similar for cisatracurium and (+)-tubocurarine or metocurine. Cisatracurium did not shift the apparent IC(50) of pancuronium or vecuronium, indicating independent binding of these two pairs. The data were fit to a two-site, two-antagonist model to determine the antagonist binding constants for each site, L(alphaepsilon) and L(alphadelta). We found L(alphaepsilon)/L(alphadelta) = 0.22 (range, 0.14-0.34), 20 (9-29), 21 (4-36), and 1.5 (0.3-2.9) for cisatracurium, pancuronium, vecuronium, and rocuronium, respectively. The wide range of L(alphaepsilon)/L(alphadelta) for some antagonists may reflect experimental uncertainties in the low affinity site, relatively poor selectivity (rocuronium), or possibly that the binding of an antagonist at one site affects the affinity of the second site.


Man Liu, James P Dilger. Site selectivity of competitive antagonists for the mouse adult muscle nicotinic acetylcholine receptor. Molecular pharmacology. 2009 Jan;75(1):166-73

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 18842832

View Free Full Text