Correlation Engine 2.0
Clear Search sequence regions


  • adipocytes (1)
  • adiponectin (1)
  • aica ribonucleotide (1)
  • amino acid sequence (1)
  • aminoimidazole carboxamide (2)
  • amp (5)
  • amp phosphorylation (2)
  • AMPK (8)
  • animals (1)
  • antidiabetic drug (3)
  • atp (8)
  • binding sites (1)
  • biosynthesis (1)
  • calcium (2)
  • calcium calmodulin- dependent protein kinase ki... (2)
  • calcium- dependent protein kinase (2)
  • calmodulin dependent protein kinase (2)
  • camkkbeta (1)
  • carbohydrate metabolism (1)
  • catalytic subunit (1)
  • cell cycle (1)
  • cells (1)
  • consensus sequence (1)
  • consumption (1)
  • cytokines (1)
  • diabetes mellitus (1)
  • endothelial cells (1)
  • energy (2)
  • energy metabolism (1)
  • enzyme activation (1)
  • eukaryotic cells (1)
  • glycogen (1)
  • health benefits (1)
  • hepatocytes (1)
  • hormones (1)
  • humans (1)
  • insulin (4)
  • kinase (2)
  • leptin (1)
  • lipid metabolism (1)
  • LKB1 (1)
  • lymphocytes (1)
  • metabolic stresses (2)
  • metabolic syndrome (1)
  • metformin (3)
  • mice (1)
  • mice knockout (1)
  • models molecular (1)
  • molecular sequence data (1)
  • multienzyme complexes (2)
  • muscle cells (1)
  • muscle contraction (1)
  • neurones (1)
  • nucleotides (1)
  • obesity (2)
  • oxygen (1)
  • oxygen consumption (1)
  • peptide hormones (2)
  • phosphorylation (1)
  • processes cell growth (1)
  • protein processing (1)
  • protein processing, post- translational (1)
  • protein subunits (2)
  • rats (1)
  • ribonucleotides (2)
  • sequence alignment (1)
  • sequence homology (1)
  • sequence homology, amino acid (1)
  • serine threonine kinases (2)
  • serine threonine kinases (2)
  • signaling (1)
  • stk11 protein, human (1)
  • stress level (1)
  • Sizes of these terms reflect their relevance to your search.

    The AMP-activated protein kinase (AMPK) system acts as a sensor of cellular energy status that is conserved in all eukaryotic cells. It is activated by increases in the cellular AMP:ATP ratio caused by metabolic stresses that either interfere with ATP production (eg, deprivation for glucose or oxygen) or that accelerate ATP consumption (eg, muscle contraction). Activation in response to increases in AMP involves phosphorylation by an upstream kinase, the tumor suppressor LKB1. In certain cells (eg, neurones, endothelial cells, and lymphocytes), AMPK can also be activated by a Ca(2+)-dependent and AMP-independent process involving phosphorylation by an alternate upstream kinase, CaMKKbeta. Once activated, AMPK switches on catabolic pathways that generate ATP, while switching off ATP-consuming processes such as biosynthesis and cell growth and proliferation. The AMPK complex contains 3 subunits, with the alpha subunit being catalytic, the beta subunit containing a glycogen-sensing domain, and the gamma subunits containing 2 regulatory sites that bind the activating and inhibitory nucleotides AMP and ATP. Although it may have evolved to respond to metabolic stress at the cellular level, hormones and cytokines such as insulin, leptin, and adiponectin can interact with the system, and it now appears to play a key role in maintaining energy balance at the whole body level. The AMPK system may be partly responsible for the health benefits of exercise and is the target for the antidiabetic drug metformin. It is a key player in the development of new treatments for obesity, type 2 diabetes, and the metabolic syndrome.

    Citation

    Mhairi C Towler, D Grahame Hardie. AMP-activated protein kinase in metabolic control and insulin signaling. Circulation research. 2007 Feb 16;100(3):328-41

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 17307971

    View Full Text