Correlation Engine 2.0
Clear Search sequence regions


Oestrous cycle and sex differences in sodium-dependent transport of L-[3H]glutamate and L-[3H]aspartate were investigated employing well washed synaptosomes prepared from rat brain cortex. Transport was best analysed on the basis of two components, a high and low affinity transport site. Oestrous cycle and sex differences were observed for both substrates. The high affinity transporter displayed highest affinity for glutamate transport in synaptosomes from female rats during proestrous and oestrous. This differed significantly from glutamate transport during dioestrous and in male rats. High affinity aspartate transport displayed highest affinity during oestrous and differed significantly from transport during dioestrous. Maximal velocity of high affinity glutamate transport was higher in synaptosomes from females during dioestrous compared with oestrous and lower in synaptosomes from male rats when compared with female rats in dioestrous and metoestrous. The low affinity sodium-dependent glutamate transporter displayed a 10-fold higher affinity for glutamate during proestrous than during the other three phases of oestrous and in male rats. Exogenously applied oestradiol and progesterone to synaptosomes from male rats showed no effect on glutamate or aspartate transport. No acute effect of oestradiol or progesterone on glutamate currents in oocytes expressing EAAT1 or EAAT2 subtype of glutamate transporter was observed. These results suggest hormonal regulation of high and low affinity sodium-dependent excitatory amino acid transporters over the four day oestrous cycle in synaptosomes from rat cortex. This regulation is unlikely to be due to a direct effect of oestradiol or progesterone on glutamate transporters.

Citation

A D Mitrovic, J E Maddison, G A Johnston. Influence of the oestrous cycle on L-glutamate and L-aspartate transport in rat brain synaptosomes. Neurochemistry international. 1999 Feb;34(2):101-8

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 10213067

View Full Text