Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Recent molecular cloning of the epithelial sodium channel (ENaC) provides the opportunity to identify ENaC-associated proteins that function in regulating its cell surface expression and activity. We have examined whether ENaC is associated with Apx (apical protein Xenopus) and the spectrin-based membrane cytoskeleton in Xenopus A6 renal epithelial cells. We have also addressed whether Apx is required for the expression of amiloride-sensitive Na(+) currents by cloned ENaC. Sucrose density gradient centrifugation of A6 cell detergent extracts showed co-sedimentation of xENaC, alpha-spectrin, and Apx. Immunoblot analysis of proteins co-immunoprecipitating under high stringency conditions from peak Xenopus ENaC/Apx-containing gradient fractions indicate that ENaC, Apx, and alpha-spectrin are associated in a macromolecular complex. To examine whether Apx is required for the functional expression of ENaC, alphabetagamma mENaC cRNAs were coinjected into Xenopus oocytes with Apx sense or antisense oligodeoxynucleotides. The two-electrode voltage clamp technique showed there was a marked reduction in amiloride-sensitive current in oocytes coinjected with antisense oligonucleotides when to compared with oocytes coinjected with sense oligonucleotides. These studies indicate that ENaC is associated in a macromolecular complex with Apx and alpha-spectrin in A6 cells and suggest that Apx is required for the functional expression of ENaC in Xenopus epithelia.

Citation

J B Zuckerman, X Chen, J D Jacobs, B Hu, T R Kleyman, P R Smith. Association of the epithelial sodium channel with Apx and alpha-spectrin in A6 renal epithelial cells. The Journal of biological chemistry. 1999 Aug 13;274(33):23286-95

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 10438504

View Full Text