Correlation Engine 2.0
Clear Search sequence regions


We have studied the posterior spiracles of Drosophila as a model to link patterning genes and morphogenesis. A genetic cascade of transcription factors downstream of the Hox gene Abdominal-B subdivides the primordia of the posterior spiracles into two cell populations that develop using two different morphogenetic mechanisms. The inner cells that give rise to the spiracular chamber invaginate by elongating into "bottle-shaped" cells. The surrounding cells give rise to a protruding stigmatophore by changing their relative positions in a process similar to convergent extension. The genetic cascades regulating spiracular chamber, stigmatophore, and trachea morphogenesis are different but coordinated to form a functional tracheal system. In the posterior spiracle, this coordination involves the control of the initiation of cell invagination that starts in the cells closer to the trachea primordium and spreads posteriorly. As a result, the opening of the tracheal system shifts back from the spiracular branch of the trachea into the posterior spiracle cells. We analyze the contribution of the ems gene to this coordination. In ems mutants, invagination of the spiracle cells adjacent to the trachea does not occur, but more posterior cells of the spiracle invaginate normally. This results in a spiracle without a lumen and with the tracheal opening located outside it. Copyright 1999 Academic Press.

Citation

N Hu, J Castelli-Gair. Study of the posterior spiracles of Drosophila as a model to understand the genetic and cellular mechanisms controlling morphogenesis. Developmental biology. 1999 Oct 1;214(1):197-210

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 10491268

View Full Text