Correlation Engine 2.0
Clear Search sequence regions


The heat-shock response is a cellular defence mechanism against environmental stresses that is evolutionarily conserved from bacteria to man. Numerous reports demonstrate the beneficial effects of heat-shock protein induction on cell survival under toxic or oxidative stress, e.g., in cardiac and cerebral ischemia or prior to organ transplantation. However, there is little data on the effects of heat treatment on damage caused by UV irradiation. Applying three independent techniques, we have tested the influence of thermal pretreatment of skin cells (1 h, 43 degrees C) on the initial extent of UV-B-induced DNA damage and its subsequent repair. For cultured human epidermal keratinocytes and dermal fibroblasts we can show reduced levels of nucleotide-excision-repair-associated DNA strand incision in the comet assay. Moreover, immunostaining and flow cytometric quantitation of thymidine dimers immediately and one day after irradiation, respectively, reveal that the initial DNA damage is not (keratinocytes) or only moderately (fibroblasts) lower in heat-shocked cells as compared to untreated controls. However, excision repair of dimers is significantly attenuated during the first 24 h in both cell types. Furthermore, using a modified host-cell reactivation assay, we are able to demonstrate that repair of UV-B-damaged plasmid DNA is lower if the transfected cells are previously heat shocked. In summary, heat treatment (1 h, 43 degrees C) inducing heat-shock proteins reduces nucleotide excision repair of UV-B-mediated DNA lesions in fibroblasts and keratinocytes during the following 24 h. This is not necessarily caused by elevated heat-shock protein levels themselves. Possibly the direct thermal damage of repair enzymes is more severe than the potential protective effects of heat-shock proteins.

Citation

T Schmidt-Rose, D Pollet, K Will, J Bergemann, K P Wittern. Analysis of UV-B-induced DNA damage and its repair in heat-shocked skin cells. Journal of photochemistry and photobiology. B, Biology. 1999 Nov-Dec;53(1-3):144-52

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 10672538

View Full Text