Correlation Engine 2.0
Clear Search sequence regions


Both N-methyl-D-aspartate (NMDA) and quisqualate/AMPA-insensitive metabotropic glutamate (mGlu) receptors mediate plasticity induction in neocortex, but their interlaminar distribution in cortical microcircuits is largely unknown. We used (+)(3)H-MK801 and (3)H-glutamate binding plus saturating concentrations of NMDA, AMPA, and quisqualate to autoradiographically map NMDA and mGlu receptor sites by lamina in posterior cingulate cortex in adult male rats. Specific binding at NMDA receptor sites in laminae II/III and VI was significantly reduced in comparison to other laminae. Brains prepared from rats killed during dark phase of a 12h/12h light/dark cycle showed a mean 129% increase in overall (+)(3)H-MK801 binding versus light phase brains but retained reduced binding densities in laminae II/III and VI. In contrast to NMDA findings, specific binding at mGlu sites was consistently elevated during light phase in both laminae II/III and VI. Specific (3)H-glutamate binding in dark-phase brains showed an overall 147% increase versus light phase binding but did not retain significant interlaminar heterogeneity. Interpreted in accordance with our physiologically derived models of hippocampo-cortical microcircuitry, these results suggest that spatial and temporal variations in glutamate receptor distribution may play an important role in intracingulate neural processing of afferent input from hippocampus.

Citation

T G Hedberg, E F Sperber, J Velísková, S L Moshé. Laminar and temporal heterogeneity of NMDA/metabotropic glutamate receptor binding in posterior cingulate cortex. Journal of neurophysiology. 2000 Oct;84(4):1881-7

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 11024080

View Full Text