Correlation Engine 2.0
Clear Search sequence regions


Guided bone regeneration (GBR) is employed to encourage the formation of new bone in osseous defects by restricting the infiltration of soft tissues. While a variety of membranes have been evaluated for this surgical procedure, the non-resorbable material of choice is currently expanded polytetrafluoroethylene (e-PTFE). A new alkali-cellulose membrane produced by a biotechnological process has been developed as an alternative to e-PTFE for GBR. In this study, the biocompatibility of this novel alkali-cellulose membrane and e-PTFE was compared using tissue culture and an in vivo GBR model. In vitro both materials supported the attachment, migration and differentiation of osteoblast-like cells in culture for up to 3 weeks. The in vivo model was based upon full-thickness transcortical bone defects in the mandibular rami of Sprague-Dawley rats. The right rami were used as controls, contralateral defects being covered bucally and lingually with either e-PTFE or alkali-cellulose membranes. Pathological and histomorphometric analysis was undertaken at 4 and 10 weeks post-implantation. Bone regeneration associated with alkali-cellulose membranes was predominantly endochondral in type in contrast to e-PTFE which induced direct bone formation (intramembranous ossification). The amount of new bone formed in defects was similar for both types of membrane, but alkali-cellulose membranes induced significantly greater inflammatory response; characterized by lymphocytes, macrophages and multinucleated giant cells. Degradation and possible exposure of individual cellulose fibres may account for the poor performance of alkali-cellulose membranes in vivo. This animal and in vitro study indicates that when choosing a non-resorbable membrane for GBR, e-PTFE membranes are likely to perform better than those produced from alkali-cellulose.

Citation

L A Salata, P V Hatton, A J Devlin, G T Craig, I M Brook. In vitro and in vivo evaluation of e-PTFE and alkali-cellulose membranes for guided bone regeneration. Clinical oral implants research. 2001 Feb;12(1):62-8

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 11168272

View Full Text