Correlation Engine 2.0
Clear Search sequence regions


We established previously that a novel negative feedback mechanism for the regulation of penile erection, which is triggered by ascending sensory inputs initiated by tumescence of the penis, exists in the hippocampal formation (HF). This study further evaluated the participation of nitric oxide (NO) and the contribution of nitric oxide synthase (NOS) isoforms at the HF in this process. Adult, male Sprague-Dawley rats that were anaesthetized and maintained with chloral hydrate were used, and intracavernous pressure (ICP) recorded from the corpus cavernosum of the penis was employed as our experimental index for penile erection. Microinjection bilaterally of a NO donor, S-nitroso-N-acetylpenicillamine (0.25 or 1 nmoles), or the NO precursor, L-arginine (1 or 5 nmoles), into the hippocampal CA1 or CA3 subfield or dentate gyrus elicited a significant reduction in baseline ICP. Bilateral hippocampal application of a NO trapping agent, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (10 nmoles), significantly potentiated the elevation in ICP induced by intracavernous administration of papaverine (400 microg). Microinjection bilaterally into the HF of equimolar doses (0.5 or 2.5 pmoles) of two selective neuronal NOS inhibitors, 7-nitroindazole or N(omega)-propyl-L-arginine; or equimolar doses (50 or 250 pmoles) of two selective inducible NOS inhibitors, aminoguanidine or S-methylisothiourea, significantly enhanced the magnitude and/or duration of the papaverine-induced elevation in ICP. In contrast, hippocampal application of a potent endothelial NOS inhibitor, N5-(1-iminoethyl)-L-ornithine (18 or 92 nmoles), was ineffective. Neither of these inhibitors, furthermore, affected baseline ICP. These results suggest that NO generated via both neuronal and inducible NOS at the HF may participate in negative feedback regulation of penile erection.

Citation

Alice Y W Chang, Julie Y H Chan, Samuel H H Chan. Differential contributions of nitric oxide synthase isoforms at hippocampal formation to negative feedback regulation of penile erection in the rat. British journal of pharmacology. 2002 May;136(1):1-8

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 11976262

View Full Text