Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The possibility that RNY pattern bias in extant sequences is a remnant of more pronounced bias of this type in early ancestors was investigated. To this end, conserved residues (those residues for which the inferred ancestral and known descendant amino acids are identical) and non-conserved residues of ancient proteins dating to the Last Universal Ancestor were identified within six species: two archaea, two eubacteria and two eukaryotes. Bias within sequence elements encoding each subset of residues, conserved and non-conserved, was then determined. In all species, GNN bias is greater within conserved than non-conserved sequence elements, whereas ANN is not. This difference is statistically significant in all six species examined. Since the relative mutability of the GNN-encoded amino acids does not explain the greater bias in conserved sequences, it is concluded that early sequences probably possessed a strong GNN bias. It is suggested that this bias may be a consequence of the GNN codons being the first introduced into the genetic code. Although NNY bias is also greater within conserved sequence elements of the six species, that difference is statistically significant in only half of them. Therefore, the evidence for early NNY bias remains inconclusive. The findings of this study do not support the proposal of Diaz-Lazcoz et al. (J. Mol. Biol. 250 (1995) 123) that the codons of the TCN four-codon block were the first assigned to serine during the evolution of the genetic code.

Citation

Dawn J Brooks, Jacques R Fresco. Greater GNN pattern bias in sequence elements encoding conserved residues of ancient proteins may be an indicator of amino acid composition of early proteins. Gene. 2003 Jan 16;303:177-85

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 12559579

View Full Text