Correlation Engine 2.0
Clear Search sequence regions

Pneumocystis carinii (PC) causes severe pneumonia in immunocompromised patients. PC is intrinsically resistant to treatment with azole antifungal medications. The enzyme lanosterol 14 alpha-demethylase (Erg11) is the target for azole antifungals. We cloned PCERG11 and compared its sequence to Erg11 proteins present in azole-resistant organisms, and performed chromosomal and Northern blot analysis for PCERG11. Of 13 potential sites which could confer resistance to azoles, two were identical to azole-resistant Candida. By site-directed mutagenesis we changed these two sites in PCERG11 to those present in azole-sensitive Candida to generate PCERG11-SDM (E113D, T125K). We tested the susceptibility of ERG11 deletion strains of Saccharomyces cerevisiae (SC) expressing PCERG11, PCERG11-SDM, and wild-type SCERG11 to three azole antifungals: fluconazole, itraconazole, and voriconazole. PCERG11 required a 2.2-fold higher dose of voriconazole and 3.5-fold higher dose of fluconazole than SCERG11 for a 50% reduction in growth. No difference was observed in the sensitivity to itraconazole. PCERG11-SDM has increased sensitivity to fluconazole and voriconazole, but not itraconazole. We believe that the molecular structure of the lanosterol 14 alpha-demethylase encoded by PCERG11 confers inherent resistance to azole antifungals and plays an integral part in the overall resistance of this PC to azole therapy.


Ian J Morales, Pawan K Vohra, Veenu Puri, Theodore J Kottom, Andrew H Limper, Charles F Thomas. Characterization of a lanosterol 14 alpha-demethylase from Pneumocystis carinii. American journal of respiratory cell and molecular biology. 2003 Aug;29(2):232-8

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 12606318

View Full Text