Correlation Engine 2.0
Clear Search sequence regions


The cyclin-dependent kinase (Cdk) inhibitor p27Kip1 contributes to the timing of cell cycle withdrawal during development and, consequently, in organogenesis. Within the retina, this effector protein is up-regulated during the birth of neuronal and glial cells [Dev. Biol. (2000) 299]. However, its expression within the retinal pigment epithelium (RPE), a supporting cell layer that is essential for neural retina development and function, has not previously been reported. We show that p27Kip1 protein expression in the RPE occurs in two phases: an up-regulation during mid-to late embryonic stages and a down-regulation during the subsequent postnatal period. In the early phase of up-regulation, an inverse relationship is seen between expression of p27Kip1 and PCNA, an indicator of cycling cells. During both up-and down-regulation, the change in spatial pattern of expression proceeds in a central to peripheral manner, with p27Kip1 up-regulation paralleling retinal maturation. These data suggest that this cell cycle regulator may be an important factor controlling the timing of RPE cell cycle withdrawal.

Citation

Dennis M Defoe, Edward M Levine. Expression of the cyclin-dependent kinase inhibitor p27Kip1 by developing retinal pigment epithelium. Gene expression patterns : GEP. 2003 Oct;3(5):615-9

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 12971995

View Full Text