Correlation Engine 2.0
Clear Search sequence regions


Mitochondrial acetoacetyl-CoA thiolase (T2) deficiency is an inborn error of metabolism affecting isoleucine and ketone bodies in the catabolic process. Mutation analysis and expression analysis of mutant cDNAs have facilitated the division of T2-deficient patients into two groups: those with null mutations in either allele (group 1) and those with mutation(s) retaining some residual T2 activity in at least one of two mutant alleles (group II). Among 5 Japanese T2-deficient patients, GK01 belonged to group I and the other patients (GK19, GK19B, GK30 and GK31) to group II. As we have suggested previously, the severity of ketoacidotic episodes in the group II patients was similar to that in the group I patient. However, the urinary organic acid and blood spot acylcarnitine profiles under stable conditions differed between the two groups. The group I patient had typical profiles for the T2 deficiency. In contrast, in all four patients in group II, tiglylglycine was not or was only faintly detected and the 2-methyl-3-hydroxybutyrate levels were less than the cutoff value. Their tiglylcarnitine levels were within the normal range and 2-methyl-3-hydroxy-, butyrylcarnitine was detected just around the cutoff value in our newborn screening pilot test. Hence, these analyses under stable conditions are not reliable for diagnosing the T2 deficiency in the group II patients. The T2 deficiency (group II) can be misdiagnosed as normal if these analyses are performed under nonepisodic conditions and possibly during the newborn screening for inborn errors of metabolism.

Citation

T Fukao, G X Zhang, N Sakura, T Kubo, H Yamaga, A Hazama, Y Kohno, N Matsuo, M Kondo, S Yamaguchi, Y Shigematsu, N Kondo. The mitochondrial acetoacetyl-CoA thiolase (T2) deficiency in Japanese patients: urinary organic acid and blood acylcarnitine profiles under stable conditions have subtle abnormalities in T2-deficient patients with some residual T2 activity. Journal of inherited metabolic disease. 2003;26(5):423-31

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 14518824

View Full Text