Correlation Engine 2.0
Clear Search sequence regions


The aim of this study was to determine the pathway(s) by which ethanol activates mitogen-activated protein kinase (MAPK) signaling and to determine the role of Ca2+ in the signaling process. MAPK signaling was determined by assessing MAPK activity, measuring phosphorylated extracellular signaling-regulated kinase (pp 44 ERK-1 and pp 42 ERK-2) expression and ERK activity by measuring ERK-2-dependent phosphorylation of a synthetic peptide as a MAPK substrate in rat vascular smooth muscle cells. Ethanol activated extracellular signal-regulated kinase expression (ERK 1 and 2) could be observed when vascular smooth muscle cells (VSMCs) were stimulated for 5 min or less, but was inhibited when cells are treated for 10 min or more with 1-16 mM of ethanol. Maximum ethanol-induced MAPK activity was observed within 5 min with 4 or 8 mM. Ethanol stimulated MAPK activity was blocked by the protein kinase C (PKC) inhibitor (GF109203X) and epidermal growth factor (EGF) receptor antagonist (PD153035) by 41 +/- 24 and 34 +/- 12.3%, respectively. The calcium channel blocker, diltiazem and the chelating agent, BAPTA, reduced the activation of MAPK activity by ethanol, significantly. The data demonstrate that ethanol-stimulated MAPK expression is mediated partially through both the EGF-receptor and PKC intermediates and that activation through the PKC intermediate is calcium-dependent.

Citation

B Washington, C Mtshali, S Williams, H Smith, J D Li, B Shaw, J Gwathmey. Ethanol-induced mitogen activated protein kinase activity mediated through protein kinase C. Cellular and molecular biology (Noisy-le-Grand, France). 2003 Dec;49(8):1351-6

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 14984009

View Full Text