Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Heart carnitine palmitoyl transferase I (CPTI) is inhibited in vivo during endotoxaemia and in vitro by peroxynitrite but the biochemical basis of this inhibition is not known. The aim of this study was to determine which isoform of CPT I is inhibited during endotoxaemia and whether the inhibition is due to increased tyrosine nitration. Cardiac mitochondria were isolated from endotoxaemic suckling rats. To determine whether M- or L-CPTI was inhibited, we carried out titrations with DNP-etomoxir-CoA. Slopes of the titration curves with DNP-etomoxir-CoA were no different between control and endotoxaemia, suggesting that M-CPTI was specifically inhibited. Immunoprecipitation was carried out using an anti-nitrotyrosine antibody. Immunoprecipitated proteins were identified by Western blotting with L- and M-CPTI specific antibodies. L-CPTI was nitrated both in control and in 2- and 6-h endotoxaemia mitochondria but there was no significant difference in the level of nitration. M-CPTI was also nitrated in control mitochondria but nitration was significantly increased at both 2- and 6-h endotoxaemia. Either 10 mM 3-nitrotyrosine plus 40 microg nitrated-albumin or 0.5 M dithionite, during immunoprecipitation, greatly decreased immunopositivity for M- and L-CPTI on WB. M-CPTI appears to be a novel target for peroxynitrite during endotoxaemia, which would alter myocardial substrate selection.

Citation

Koji Fukumoto, Agostino Pierro, Victor A Zammit, Lewis Spitz, Simon Eaton. Tyrosine nitration of carnitine palmitoyl transferase I during endotoxaemia in suckling rats. Biochimica et biophysica acta. 2004 Jul 5;1683(1-3):1-6

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 15238213

View Full Text