Correlation Engine 2.0
Clear Search sequence regions


Progesterone is produced from cholesterol in cumulus cells during meiotic resumption of porcine oocytes. In follicular cells, it has been shown that exogenous lipoprotein-bound cholesterol ester can be used for steroid hormone production. However, in serum-free medium, progesterone is also secreted by FSH- and LH-stimulated cumulus-oocyte complexes, suggesting that progesterone could be produced from de novo synthesized cholesterol in cumulus cells. In the present study, we investigated the expression of Delta14-reductase and Delta7-reductase, which are the members of the superfamily that converts acetyl-CoA to cholesterol in cumulus cells. The expression of both genes was analyzed by RT-PCR. Both Delta14-reductase mRNA and Delta7-reductase mRNA in cumulus cells, cultured until 4 h, were under the level of detection limit. In response to gonadotropins, both mRNA levels were dramatically up-regulated, reaching a maximum at 20 h. To clarify the role of induced enzymes in cumulus cells, cumulus-oocyte complexes were cultured with either Delta14-reductase inhibitor, AY9944-A-7, or Delta7-reductase inhibitor, BM15.766. The results indicated that these inhibitors significantly suppressed the progesterone production in cumulus cells and meiotic progression of oocytes. The inhibitory effects reached a maximum at 1 microM AY9944-A-7 or 20 microM BM15.766. The addition of 20 ng/ml progesterone overcame the inhibitory effects of both drugs on meiotic resumption of oocytes. These results imply that gonadotropin-induced expression and function of Delta14-reductase and Delta7-reductase in cumulus cells contribute to oocyte meiotic resumption via a progesterone-dependent pathway.

Citation

Yasuhisa Yamashita, Masahide Nishibori, Takato Terada, Naoki Isobe, Masayuki Shimada. Gonadotropin-induced delta14-reductase and delta7-reductase gene expression in cumulus cells during meiotic resumption of porcine oocytes. Endocrinology. 2005 Jan;146(1):186-94

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 15459117

View Full Text