Correlation Engine 2.0
Clear Search sequence regions


Sugar biosynthesis cassette genes have been used to construct plasmids directing the biosynthesis of branched-chain deoxysugars: pFL942 (NDP-L-mycarose), pFL947 (NDP-4-deacetyl-L-chromose B), and pFL946/pFL954 (NDP-2,3,4-tridemethyl-L-nogalose). Expression of pFL942 and pFL947 in S. lividans 16F4, which harbors genes for elloramycinone biosynthesis and the flexible ElmGT glycosyltransferase of the elloramycin biosynthetic pathway, led to the formation of two compounds: 8-alpha-L-mycarosyl-elloramycinone and 8-demethyl-8-(4-deacetyl)-alpha-L-chromosyl-tetracenomycin C, respectively. Expression of pFL946 or pFL954 failed to produce detectable amounts of a novel glycosylated tetracenomycin derivative. Formation of these two compounds represents examples of the sugar cosubstrate flexibility of the ElmGT glycosyltransferase. The use of these cassette plasmids also provided insights into the substrate flexibility of deoxysugar biosynthesis enzymes as the C-methyltransferases EryBIII and MtmC, the epimerases OleL and EryBVII, and the 4-ketoreductases EryBIV and OleU.

Citation

Felipe Lombó, Miranda Gibson, Lisa Greenwell, Alfredo F Braña, Jürgen Rohr, José A Salas, Carmen Méndez. Engineering biosynthetic pathways for deoxysugars: branched-chain sugar pathways and derivatives from the antitumor tetracenomycin. Chemistry & biology. 2004 Dec;11(12):1709-18

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 15610855

View Full Text