Correlation Engine 2.0
Clear Search sequence regions


The turnip mosaic virus (TuMV) genome-linked protein (VPg) and Arabidopsis thaliana translation initiation factors were expressed and purified in order to investigate their binding properties and kinetics. Affinity chromatography on m(7)GTP-sepharose showed that bound A. thaliana eIF(iso)4E was eluted with crude TuMV VPg. Further column studies with purified VPg and other A. thaliana eIF4E isoforms showed that VPg preferentially bound eIF(iso)4E. Structural data implicate Trp-46 and Trp-92 in eIF(iso)4E in cap recognition. When Trp-46 or Trp-92 were changed to Leu, eIF(iso)4E lost the ability to form a complex with both VPg and m(7)GTP-sepharose. This suggests that the VPg-binding site is located in or near the cap-recognition pocket on eIF(iso)4E. Affinity constants for the interactions with eIF(iso)4E of VPg and capped RNA oligomer were determined using surface plasmon resonance (SPR). The K(D) values showed that the binging affinity of VPg for eIF(iso)4E is stronger than that of capped RNA. This suggests that viral VPg can interfere with formation of a translational initiation complex on host plant cellular mRNA by sequestering eIF(iso)4E. Further experiments with affinity chromatography showed that VPg forms a ternary complex with eIF(iso)4E and eIF(iso)4G. Thus, VPg may participate in viral translational initiation by functioning as an alternative cap-like structure.

Citation

Hiroshi Miyoshi, Noriko Suehiro, Koji Tomoo, Shinji Muto, Tsubasa Takahashi, Toshiro Tsukamoto, Taku Ohmori, Tomohide Natsuaki. Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors. Biochimie. 2006 Mar-Apr;88(3-4):329-40

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 16300873

View Full Text