Correlation Engine 2.0
Clear Search sequence regions


We hypothesized that gene expression profiling may discriminate vanadium from zinc in human bronchial epithelial cells (HBECs). RNA from HBECs exposed to vehicle, V (50 microM), or Zn (50 microM) for 4 hr (n = 4 paired experiments) was hybridized to Affymetrix Hu133A chips. Using one-class t-test with p < 0.01, we identified 140 and 76 genes with treatment:control ratios > or = 2.0 or < or = 0.5 for V and Zn, respectively. We then categorized these genes into functional pathways and compared the number of genes in each pathway between V and Zn using Fisher's exact test. Three pathways regulating gene transcription, inflammatory response, and cell proliferation distinguished V from Zn. When genes in these three pathways were matched with the 163 genes flagged by the same statistical filtration for V:Zn ratios, 12 genes were identified. The hierarchical clustering analysis showed that these 12 genes discriminated V from Zn and consisted of two clusters. Cluster 1 genes (ZBTB1, PML, ZNF44, SIX1, BCL6, ZNF450) were down-regulated by V and involved in gene transcription, whereas cluster 2 genes (IL8, IL1A, PTGS2, DTR, TNFAIP3, CXCL3) were up-regulated and linked to inflammatory response and cell proliferation. Also, metallothionein 1 genes (MT1F, MT1G, MT1K) were up-regulated by Zn only. Thus, using microarray analysis, we identified a small set of genes that may be used as biomarkers for discriminating V from Zn. The novel genes and pathways identified by the microarray may help us understand the pathogenesis of health effects caused by environmental V and Zn exposure.

Citation

Zhuowei Li, Jackie Stonehuerner, Robert B Devlin, Yuh-Chin T Huang. Discrimination of vanadium from zinc using gene profiling in human bronchial epithelial cells. Environmental health perspectives. 2005 Dec;113(12):1747-54

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 16330358

View Full Text