Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

An amino acid sequence for a Chlamydomonas calmodulin has been elucidated with emphasis on the characterization of differences that are unique to Chlamydomonas and Dictyostelium calmodulin. While the concentration of calmodulin required for half-maximal activation of plant NAD kinase varies among vertebrate, higher plant, algal, and slime mold calmodulins, only calmodulins from the unicellular alga Chlamydomonas and the slime mold Dictyostelium show increased maximal activation of NAD kinase (Roberts, Burgess, Watterson 1984 Plant Physiol 75: 796-798; Marshak, Clarke, Roberts, Watterson 1984 Biochemistry 23: 2891-2899). The same preparations of calmodulin do not show major differences in phosphodiesterase or myosin light chain kinase activator activity.We report here that a Chlamydomonas calmodulin has four primary structural features similar to Dictyostelium that are not found in other calmodulins characterized to date: an altered carboxy terminus including a novel 11-residue extension for Chlamydomonas calmodulin, unique residues at positions 81 and 118, and an unmethylated lysine at position 115. The only amino acid sequence identity unique to Chlamydomonas and Dictyostelium calmodulin is the presence of a lysine at position 115 instead of a trimethyllysine. These studies indicate that the methylation state of lysine 115 may be important in the maximal NAD kinase activator activity of calmodulin and support the concept that calmodulin has multiple functional domains in addition to multiple structural domains.

Citation

T J Lukas, M E Wiggins, D M Watterson. Amino Acid sequence of a novel calmodulin from the unicellular alga chlamydomonas. Plant physiology. 1985 Jul;78(3):477-83


PMID: 16664269

View Full Text