Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Whisker trimming deprives the cortical barrel field from the patterned sensory input that derives from active touch but leaves passive tactile signals unaltered. We have studied in the rat barrel field, by stereological procedures, the effects of a sustained period of unilateral deprivation by whisker clipping during adolescence and early adulthood on (1) the surface density (SV) of asymmetric synapses, as determined from measuring the presynaptic membrane specializations, and (2) the numerical density of asymmetric synaptic profiles (NA), classified according to their postsynaptic target and their apparent curvature. Compared to control rats, the procedure did not change the overall volume of the region, the volume fraction occupied by each cortical layer, or the volume fraction occupied by unmyelinated axons and boutons. However, the deprived barrel cortex displayed an increase in SV in layers I and II, and an increase in NA in layer I and in the cortex as a whole, mainly due to an increase in profiles with a convex shape. Layer IV was the least affected by the deprivation. These results point to a net increase, rather than a decrease, of excitatory synapses in the deprived cortex, which could result from a deprivation-induced decrease in the rate of normal synapse loss. This effect occurs specifically in superficial layers, more involved in intracortical and cortico-cortical, rather than thalamo-cortical, processing.


Raquel Machín, César G Pérez-Cejuela, Roger Bjugn, Carlos Avendaño. Effects of long-term sensory deprivation on asymmetric synapses in the whisker barrel field of the adult rat. Brain research. 2006 Aug 30;1107(1):104-10

Expand section icon Mesh Tags

PMID: 16822483

View Full Text